Keresés
Keresés
Close this search box.

hu / en

Így segíthet az AI az infláció előrejelzésében - Vancsura László, Bareith Tibor és Tatay Tibor írása a KRTK blogban a Portfolion Tovább olvasom

Tovább olvasom

Az Európai Unió versenyképességi dilemmái - Külföldi közvetlentőke-befektetés és külkereskedelem Tovább olvasom

Csontos Tamás Tibor, Éltető Andrea és Sass Magdolna tanulmánya Tovább olvasom

Mi történik egy országgal, ha elengedi a humán tudományok kezét? Fertő Imre írása az Indexen Tovább olvasom

Tovább olvasom

Egyszerűsödött a zártkertek művelés alóli kivonása – Így kerülhetik el a buktatókat az önkormányzatok - Vasárus Gábor, Lennert József és Szalai Ádám cikke Tovább olvasom

Tovább olvasom

Dependency meets illiberalism: expansion of the EV battery sector in Central Europe - Ricz Judit és Éltető Andrea tanulmánya megjelent a Post-Communist Economies folyóiratban Tovább olvasom

Tovább olvasom

Skandináv pokol - Svédország reprezentációja a magyarországi médiában - Hegedüs Márk, Szegedi Péter és Bodor Ákos tanulmánya megjelent a Médiakutató téli lapszámában Tovább olvasom

Tovább olvasom

KTI szeminárium: Tóth Gergő – Decoding skill-relatedness: noise and signals in labour mobility

Az előadásra hibrid formában kerül sor Zoom felületen, illetve személyesen a
T 4.23-as szemináriumi teremben 2024.11.14-én, 13.00 órától.

Előadó: Tóth Gergő

BIO: Gergő Tóth holds a PhD from the Spatial Dynamics Laboratory at University College Dublin, Ireland. His work has been published in leading journals such as Nature Communications and Scientific Reports, as well as in prestigious field-specific journals including Economic Geography and Regional Studies. Currently, he is a research fellow at the ANETI Lab, Centre for Economic and Regional Studies in Hungary. Additionally, he is affiliated with the Centre for Regional Science at Umeå University, where he works as a postdoctoral researcher focusing on administrative data. Gergő’s research primarily explores the intersection of economic geography, social inequality, and network science, with a particular emphasis on the role of network structures in regional economic resilience.

Cím: Decoding skill-relatedness: noise and signals in labour mobility

Absztrakt: Labour mobility has become a central focus of economics in recent times. This is partly due to the recognition that labour mobility is no longer seen as merely a feature of social stratification but increasingly as a complex system. Essentially, labour mobility is a transition matrix illustrating how workers move between different occupations. Labour mobility has also given rise to the concept of skill-relatedness providing a good approximation of the distribution and relation of skills and capabilities found in countries and regions. Yet little is known about the formation and evolution of these networks and the economic, social, and geographical phenomena driving the development of different capability structures. In our paper two main research questions are tackled: first, identifying the factors driving labour mobility, and second, assessing how much skill-relatedness explains occupational changes. Preliminary results, combining job advertisement data with administrative databases, highlight the significance of skill similarity in understanding labour mobility. Using a machine learning technique, we discovered that skill overlap outweighs other known factors. A classification model, incorporating both skill similarity and social factors, improves predictive accuracy to nearly 85%. Despite skill similarity’s dominance, a 15% residual “noise” remains, showcasing the intricate nature of labour market movements.

 

 

2024.11.14. | Humán Tudományok Kutatóháza (1097 Budapest, Tóth Kálmán u. 4.), T4.23-as teremben és Zoom felületen