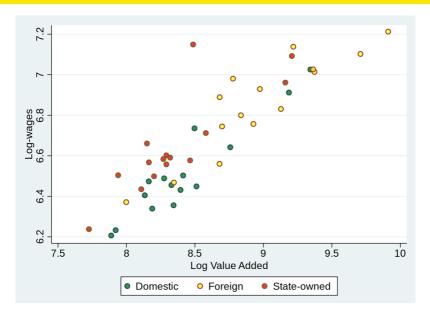
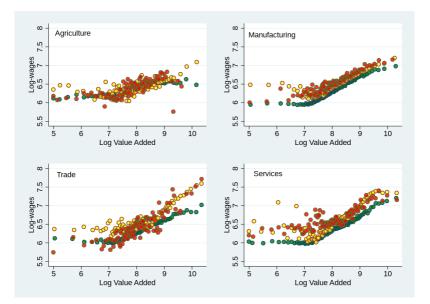
Heterogeneous and Differential Rent-sharing – A Fixed-effect Approach

István Boza¹

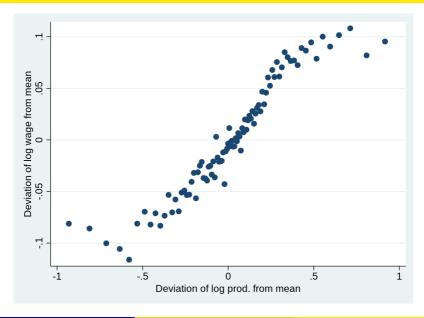

¹Central European University & KRTK KTI

bozaistvan@gmail.com

November 5, 2021


Motivation

Relation of firm productivity and wages


Motivation

Relation of firm productivity and wages

Motivation

Relation of firm productivity and wages

Relation of firm productivity and wages - causes

• Upward sloping demand curve (Monopsony models)

- Due to mobility costs, limited markets, etc.
- $\bullet~{\sf Prod}~{\sf shock} \to {\sf increase}~{\sf labor} \to {\sf has}~{\sf to}~{\sf offer}~{\sf higher}~{\sf wage}$
- But non-discriminating monopsony has to increase all wage!
- Productivity-wage pass-through rate (∈ [0, 1])
- Bargaining differences (Search models)
 - Due to search costs
 - Firms willing to share productivity rents
 - Rent-sharing elasticity $(\in [0,1])$
- Both interpretation is about the same *empirical* concept
 - $\bullet\,$ the estimation is non-trivial as well $\rightarrow\,$ this paper

In this paper

• Survey and nest empirical approaches in a common framework

- Summarize estimation issues in capturing wage-prod. relation
 - Propose a solution for an issue emerging in advanced models: selectivity
 - Estimate different specifications to illustrate severity of the biases
 - Selectivity turns out to be a second-order issue

• Second part:

- Address the heterogeneity of effects across different firms/ sectors
- Address within-firm differences in sharing of rents (differential RS)
 - Gender, education, occupation, tenure, age

The goal

We would like to estimate:

 $\ln W_{ijt} = \alpha + \gamma \ln \mathsf{RENT}_{jt} + \beta X_{ijt} + \theta_k + \omega_t + \varepsilon_{ijt}$ (1)

- W is individual or firm level wage measure
- RENT can be:
 - sales per worker
 - value added per worker (sales costs of production = wage + profit)
- γ measures: P% VA increase leads to γ P% wage increase on average
- Identifying variation depends on θ_k :
 - sector dummies ('more prod. firms pay more')
 - firm dummies ('given firm pays more, when more prod.')
 - $\bullet\,$ match (job) dummies ('given worker gets more, $\sim\,$ ')
 - different prod. variation used for identification!

Methodology

Major threats

- Simultaneity of W and RENT; no exog. variation in RENT (+/-)
 - External IVs: patents, prices, procurement, demand/export shocks
 - Internal IVs: usually based on timing assumptions (past prod shock affects long run wages, only through future prod.)
- But even if only after correlation, there are problems:
- More productive firms may employ better skilled workers (+)
 - Control for observable worker characteristics
 - \bullet Within match models \rightarrow only for stayers over e.g. 5 years
 - CCK: Use AKM firm effects to remove unobservable skill variation

In
$$w_{ijt} = \mathbf{X}_{ijt}\boldsymbol{\beta} + \theta_i + \psi_j + \epsilon_{ijt}$$

- Firm-specific, time-invariant wage premia
 - productivity differences net of worker composition
 - also compensating differentials, efficiency wages, etc.
 - for estimation see Boza (2021)

- More productive firms can have better amenities, pay lower wage (-)
 - Or use compensating differentials for disamenities (+)
 - Using within firm models remove this (Assuming no change over t)
- Measurement error in RENT, especially in longitudinal design (-)
 - Internal IVs should help in this (as well)
- Selection bias if method relies only on subset of individuals (-/+)
 - If rents are shared with long-term and short-term workers differently
 - Within-stayers vs. AKM identified from movers
 - In the paper a proposed solution for this (TV-AKM firm-year effects)

Conventional and novel approaches I.

• Traditional cross-section

$$\ln W_{ijt} = \alpha + \gamma \ln \mathsf{VA}_{jt} + \beta X_{ijt} + \lambda_{s(j)} + \omega_t + \varepsilon_{ijt}$$
(2)

• Stayer models (in FE formulation)

$$\ln W_{ijt} = \alpha + \gamma \ln VA_{jt} + \beta X_{ijt} + \mu_{ij} + \omega_t + \varepsilon_{ijt}$$
(3)

• CCK(2016) and CCHK(2018) AKM apporach

$$\ln\psi_{j} = \alpha + \gamma \ln \mathsf{VA}_{jt} + \beta X_{ijt} + \lambda_{s(j)} + \omega_{t} + \varepsilon_{ijt}$$
(4)

• Own proposition

$$\ln\psi_{jt} = \alpha + \gamma \ln \mathsf{VA}_{jt} + \beta X_{ijt} + \tilde{\psi}_j + \omega_t + \varepsilon_{ijt}$$
(5)

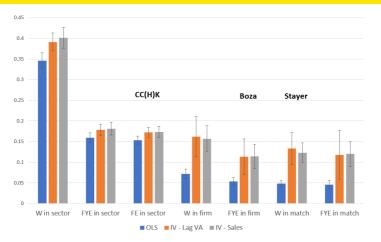
- Admin3 (published 2020), covers 2003-2017
- 50% sample of individuals, quarterly observations used
- wages, employer ID, occupations, working hours from register data
- education is only proxied based on occupational requirements (SO)
- balance sheet data for firms

Inference and sample issues

• Focus on non-zero surplus region (no rent, no share) Illustration

- Individual level outcome vs firm-year level control
 - Within spell: individual data + two-way cluster
 - Collapse to firm-year; weight by number of ind.; (firm+year) clustering
- Instruments used (against measurement error)
 - Winsorized sales per worker
 - Lag of productivity
 - latter only affects wage over persistent prod. change
- Limited mobility bias in AKM (Bonhomme et al., 2021)
 - Projection on the fixed effects: standard errors are not correct
 - KSS (2020) provides correction for this (in OLS setting)

Results I. - Previous methods, OLS


	(1) trad.CS	(2)	(3) CC(H)K	(4) trad.L	(5)	(6) Stayer	(7)
Within:	sector	sector	sector	firm	firm	match	match
Outcome:	InW	ψ_{jt}	ψ_j	InW	ψ_{jt}	InW	ψ_{jt}
LnProd	0.346		0.153	0.072		0.048	
	(0.010)		(0.005)	(0.006)		(0.004)	
Obs. (K)	395		363	368		41,688	
R ²	0.618		0.525	0.950		0.897	
#units	45		44	61751		3415K	

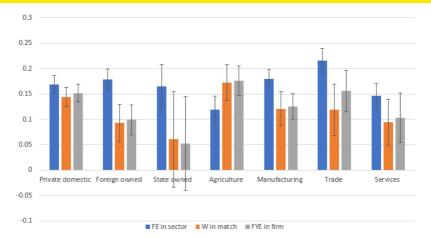
Cluster-robust standard errors in parentheses. All parameters significant at p < 0.001.

- (1) ightarrow (3) Going AKM: lower role of skill composition
- $(1) \rightarrow (4) \rightarrow (6)$: Going within firm/match
 - lower role of other wage elements and skill composition
 - more transitory reactions / measurement error / selection

• (3) vs (6): composition, m. error, selection, amenities, transitory

Results II. - With IV

- (3) vs (5) IV: composition, m. error, selection, amenities, transitory
- (5) vs (6) IV: composition, m. error, selection, amenities, transitory
- Composition, m.e., is important, selection may be second-order issue


István Boza

Heterogeneous and differential settings

$$\ln W_{ih(j)jt} = \alpha + \sum_{h \in H} \gamma_h I_{h(j)} \ln \mathsf{RENT}_{jt} + \beta X_{ijt} + \theta_{hk} + \varepsilon_{ijt}$$
(6)

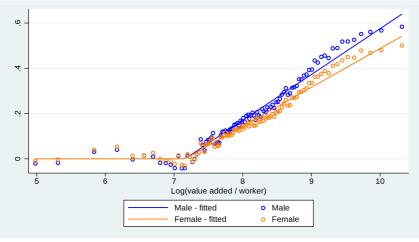
- I represents: Ownership, industry or size
- Focus on three models (with log sales IV)
 - The AKM based model of CCHK "FE in sector"
 - The 'stayers' design "W in match"
 - The proposed combination "FYE in firm"

Heterogeneous - Ownership, Industry

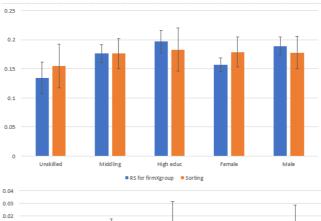
- Different models imply different rankings!
- Heterogeneity across local labor markets with different tightness, number of firms, mobility could be assessed (Criscuolo et al. (2021))

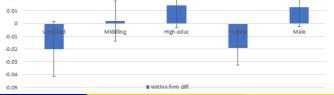
Differential settings

$$\ln W_{g(it)ijt} = \alpha + \sum_{g \in G} \gamma_g I_{g(it)} \ln \mathsf{RENT}_{jt} + \beta X_{ijt} + \theta_{gk} + \varepsilon_{ijt}$$
(7)


• W can be individual wage or firm-group AKM effect

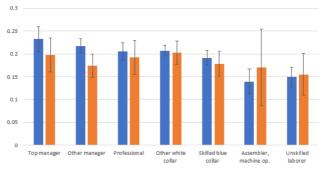
$$\ln w_{ijtg} = \mathbf{X}_{ijtg} \boldsymbol{\beta} + \theta_i + \Psi_{jg} + \lambda_{k(ij)} + \varepsilon_{ijtg}$$
(8)

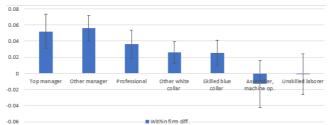

- I stands for group membership based on e.g. gender, education
- Use model of CCK and CCHK, with an extra step
 - Regress firm-group FEs on firm productivity (X group dummy)
 - Still the member of different group can select into differently 'generous' firms \rightarrow Check the difference within the firm as well


Grouped-AKM approach

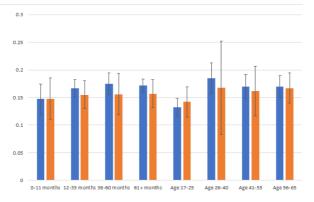
Rescaled according to CCK(2016), plotted against prod. percentiles

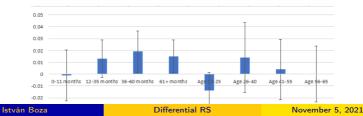
Differential - Gender, Education



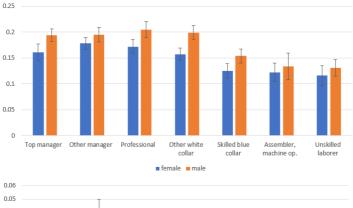

István Boza

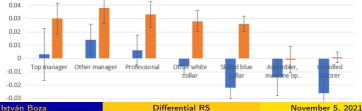
Differential RS


Differential - Occupation


RS for firmXgroup Sorting

Diff RS w.r.t tenure and age




RS for firmXgroup Sorting

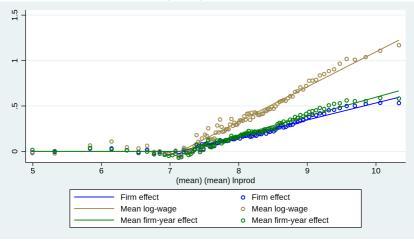
18/19

Gender across jobs

19/19

Thank you for your attention!

- Abowd, J. M., Kramarz, F., & Margolis, D. N. (1999). High wage workers and high wage firms. *Econometrica*, *67*(2), 251–333. https://doi.org/10.1111/1468-0262.00020
- Boza, I. (2021). Wage Structure and Inequality : The role of observed and unobserved heterogeneity. *KRTK-KTI WORKING PAPERS*, (31).
- Card, D., Cardoso, A. R., Heining, J., & Kline, P. (2018). Firms and Labor Market Inequality: Evidence and Some Theory. *Journal of Labor Economics*, 36(S1), S13–S70. https://doi.org/10.1086/694153


Card, D., Cardoso, A. R., & Kline, P. (2016). Bargaining, Sorting, and the Gender Wage Gap: Quantifying the Impact of Firms on the Relative Pay of Women. *Quarterly Journal of Economics*, 131(2), 633–686. https://doi.org/10.1093/qje/qjv038

References II

 Criscuolo, C., Hijzen, A., Koelle, M., Schwellnus, C., Barth, E., Chen, W.-h., Fabling, R., Fialho, P., Garloff, A., Grabska, K., Kambayashi, R., Lankester, V., Stadler, B., Skans, O. N., & Murakozy, B. (2021). The firm-level link between productivity dispersion and wage inequality : A symptom of low job mobility ? *OECD Economics Department Working Papers*, (1656).
 Kline, P., Saggio, R., & Sølvsten, M. (2020). Leave-Out Estimation of Variance Components. *Econometrica*, 88(5), 1859–1898. https://doi.org/10.3982/ecta16410

Wage-prod relation of firms

Rescaled according to CCK(2016), plotted against prod. percentiles

